0=16t^2+832t+50

Simple and best practice solution for 0=16t^2+832t+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+832t+50 equation:



0=16t^2+832t+50
We move all terms to the left:
0-(16t^2+832t+50)=0
We add all the numbers together, and all the variables
-(16t^2+832t+50)=0
We get rid of parentheses
-16t^2-832t-50=0
a = -16; b = -832; c = -50;
Δ = b2-4ac
Δ = -8322-4·(-16)·(-50)
Δ = 689024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{689024}=\sqrt{64*10766}=\sqrt{64}*\sqrt{10766}=8\sqrt{10766}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-832)-8\sqrt{10766}}{2*-16}=\frac{832-8\sqrt{10766}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-832)+8\sqrt{10766}}{2*-16}=\frac{832+8\sqrt{10766}}{-32} $

See similar equations:

| 60+90+3y-33=180 | | q/4=11/2 | | (3x^)(52^x)=4 | | y+3+8(y+9)= | | 7y+9=7y-2(y+6) | | p/5=3/2 | | 3x-1(x+3)=196 | | 90+59+x-65=180 | | 3x=x−8 | | -33=9r-2r | | 2(n+3)=-2 | | 2x-2(-1/2x-5)=10 | | 2x-4(x-1)=2(x-3) | | 52+2(8x)=180 | | 8(3a+2)=-23-6a | | c/4=1/5 | | 5(x+4)-4(x+1)=0 | | -224+7x=-5x+88 | | 4/5z=64 | | 5u^2+9u+6=0 | | 64/5n-8/9=7/15 | | -143+15x=4x+143 | | 2^10x=64 | | 256^x+2=16^3x-1 | | 3/4x+9/4=9 | | -158+x=138+9x | | 7x^2+25x-34=0 | | 0.39x-1=17/100 | | 4x^2+12x=216 | | 57y=33 | | x=(1+0.05x)(40+20x) | | -113-2x=62+5x |

Equations solver categories